Search Java Classes and Packages

Search Java Frameworks and Libraries

255581 classes and counting ...
Search Tips Index Status



#Com.numericalmethod.suanshu.analysis.differentialequation Classes and Interfaces - 51 results found.
NameDescriptionTypePackageFramework
ABMPredictorCorrectorThe Adams-Bashforth predictor and the Adams-Moulton corrector pair.Interfacecom.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.solver.multistep.adamsbashforthmoultonSuanShu
ABMPredictorCorrector1The Adams-Bashforth predictor and the Adams-Moulton corrector of order 1.Classcom.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.solver.multistep.adamsbashforthmoultonSuanShu
ABMPredictorCorrector2The Adams-Bashforth predictor and the Adams-Moulton corrector of order 2.Classcom.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.solver.multistep.adamsbashforthmoultonSuanShu
ABMPredictorCorrector3The Adams-Bashforth predictor and the Adams-Moulton corrector of order 3.Classcom.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.solver.multistep.adamsbashforthmoultonSuanShu
ABMPredictorCorrector4The Adams-Bashforth predictor and the Adams-Moulton corrector of order 4.Classcom.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.solver.multistep.adamsbashforthmoultonSuanShu
ABMPredictorCorrector5The Adams-Bashforth predictor and the Adams-Moulton corrector of order 5.Classcom.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.solver.multistep.adamsbashforthmoultonSuanShu
AdamsBashforthMoultonThis class uses an Adams-Bashford predictor and an Adams-Moulton corrector of the specified order.Classcom.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.solver.multistep.adamsbashforthmoultonSuanShu
AlternatingDirectionImplicitMethodAlternating direction implicit (ADI) method is an implicit method for obtaining numerical approximations to the solution of a HeatEquation2D.Classcom.numericalmethod.suanshu.analysis.differentialequation.pde.finitedifference.parabolic.dim2SuanShu
BurlischStoerExtrapolationBurlisch-Stoer extrapolation (or Gragg-Bulirsch-Stoer (GBS)) algorithm combines three powerful ideas: Richardson extrapolation, the use of rational function extrapolation in Richardson-typeClasscom.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.solver.extrapolationSuanShu
ConvectionDiffusionEquation1DClasscom.numericalmethod.suanshu.analysis.differentialequation.pde.finitedifference.parabolic.dim1.convectiondiffusionequationSuanShu
CrankNicolsonConvectionDiffusionEquation1DThis class uses the Crank-Nicolson scheme to obtain a numerical solution of a one-dimensional convection-diffusion PDE.Classcom.numericalmethod.suanshu.analysis.differentialequation.pde.finitedifference.parabolic.dim1.convectiondiffusionequationSuanShu
CrankNicolsonConvectionDiffusionEquation1D .CoefficientsGets the coefficients of a discretized 1D convection-diffusion equation for each time step.Classcom.numericalmethod.suanshu.analysis.differentialequation.pde.finitedifference.parabolic.dim1.convectiondiffusionequationSuanShu
CrankNicolsonHeatEquation1DThe Crank-Nicolson method is an algorithm for obtaining a numerical solution to parabolic PDE problems.Classcom.numericalmethod.suanshu.analysis.differentialequation.pde.finitedifference.parabolic.dim1.heatequationSuanShu
CrankNicolsonHeatEquation1D .CoefficientsGets the coefficients of a discretized 1D heat equation for each timeSee Also:"section 9.Classcom.numericalmethod.suanshu.analysis.differentialequation.pde.finitedifference.parabolic.dim1.heatequationSuanShu
DerivativeFunctionDefines the derivative function F(x, y) for ODE problems.Interfacecom.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.problemSuanShu
EulerMethodThe Euler method is a first-order numerical procedure for solving ordinary differential equations (ODEs) with a given initial value.Classcom.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.solverSuanShu
ExplicitCentralDifference1DThis explicit central difference method is a numerical technique for solving the one-dimensional wave equation by the following explicitClasscom.numericalmethod.suanshu.analysis.differentialequation.pde.finitedifference.hyperbolic.dim1SuanShu
ExplicitCentralDifference2DThis explicit central difference method is a numerical technique for solving the two-dimensional wave equation by the following explicitClasscom.numericalmethod.suanshu.analysis.differentialequation.pde.finitedifference.hyperbolic.dim2SuanShu
HeatEquation1DA one-dimensional heat equation (or diffusion equation) is a parabolic PDE that takes the frac{partial u}{partial t} = eta frac{partial^2 u}{partial x^2},Classcom.numericalmethod.suanshu.analysis.differentialequation.pde.finitedifference.parabolic.dim1.heatequationSuanShu
HeatEquation2DA two-dimensional heat equation (or diffusion equation) is a parabolic PDE that takes the frac{partial u}{partial t}Classcom.numericalmethod.suanshu.analysis.differentialequation.pde.finitedifference.parabolic.dim2SuanShu
IterativeCentralDifferenceAn iterative central difference algorithm to obtain a numerical approximation to Poisson's equations with Dirichlet boundary conditions.Classcom.numericalmethod.suanshu.analysis.differentialequation.pde.finitedifference.elliptic.dim2SuanShu
ODEAn ordinary differential equation (ODE) is an equation in which there is only one independent variable and one or more derivatives of a dependent variable with respect to the independentClasscom.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.problemSuanShu
ODE1stOrderA first order ordinary differential equation (ODE) initial value problem (IVP) takes the where y0 is known, and the solution of the problem is y(x) for theClasscom.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.problemSuanShu
ODE1stOrderWith2ndDerivativeSome ODE solvers require the second derivative for more accurate Taylor series approximation.Classcom.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.problemSuanShu
ODEIntegratorThis defines the interface for the numerical integration of a first order ODE, for a sequence of pre-defined steps.Interfacecom.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.solverSuanShu
ODESolutionSolution to an ODE problem.Classcom.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.solverSuanShu
ODESolverSolver for first order ODE problems.Interfacecom.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.solverSuanShu
PDEA partial differential equation (PDE) is a differential equation that contains unknown multivariable functions and their partial derivatives.Interfacecom.numericalmethod.suanshu.analysis.differentialequation.pdeSuanShu
PDESolutionGrid2DA solution to a bivariate PDE, which is applicable to methods which produce the solution as a two-dimensional grid.Interfacecom.numericalmethod.suanshu.analysis.differentialequation.pde.finitedifferenceSuanShu
PDESolutionTimeSpaceGrid1DA solution to an one-dimensional PDE, which is applicable to methods which produce the solutionInterfacecom.numericalmethod.suanshu.analysis.differentialequation.pde.finitedifferenceSuanShu
PDESolutionTimeSpaceGrid2DA solution to a two-dimensional PDE, which is applicable to methods which produce the solution as a three-dimensional grid of time and space.Interfacecom.numericalmethod.suanshu.analysis.differentialequation.pde.finitedifferenceSuanShu
PDESolverInterfacecom.numericalmethod.suanshu.analysis.differentialequation.pdeSuanShu
PDETimeSpaceGrid1DThis grid numerically solves a 1D PDE, e.Classcom.numericalmethod.suanshu.analysis.differentialequation.pde.finitedifferenceSuanShu
PoissonEquation2DPoisson's equation is an elliptic PDE that takes the following general form.Classcom.numericalmethod.suanshu.analysis.differentialequation.pde.finitedifference.elliptic.dim2SuanShu
RungeKuttaThe Runge-Kutta methods are an important family of implicit and explicit iterative methods for the approximation of solutions of ordinary differential equations.Classcom.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.solver.rungekuttaSuanShu
RungeKutta1This is the first-order Runge-Kutta formula, which is the same as the Euler method.Classcom.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.solver.rungekuttaSuanShu
RungeKutta10This is the tenth-order Runge-Kutta formula.Classcom.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.solver.rungekuttaSuanShu
RungeKutta2This is the second-order Runge-Kutta formula, which can be implemented efficiently with a three-step algorithm.Classcom.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.solver.rungekuttaSuanShu
RungeKutta3This is the third-order Runge-Kutta formula.Classcom.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.solver.rungekuttaSuanShu
RungeKutta4This is the fourth-order Runge-Kutta formula.Classcom.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.solver.rungekuttaSuanShu
RungeKutta5This is the fifth-order Runge-Kutta formula.Classcom.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.solver.rungekuttaSuanShu
RungeKutta6This is the sixth-order Runge-Kutta formula.Classcom.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.solver.rungekuttaSuanShu
RungeKutta7This is the seventh-order Runge-Kutta formula.Classcom.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.solver.rungekuttaSuanShu
RungeKutta8This is the eighth-order Runge-Kutta formula.Classcom.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.solver.rungekuttaSuanShu
RungeKuttaFehlbergThe Runge-Kutta-Fehlberg method is a version of the classic Runge-Kutta method, which additionally uses step-size control and hence allows specification of a local truncation errorClasscom.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.solver.rungekuttaSuanShu
RungeKuttaIntegratorThis integrator works with a single-step stepper which estimates the solution for the next step given the solution of the current step.Classcom.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.solver.rungekuttaSuanShu
RungeKuttaStepperInterfacecom.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.solver.rungekuttaSuanShu
SemiImplicitExtrapolationSemi-Implicit Extrapolation is a method of solving ordinary differential equations, that is similar to Burlisch-Stoer extrapolation.Classcom.numericalmethod.suanshu.analysis.differentialequation.ode.ivp.solver.extrapolationSuanShu
UnsatisfiableErrorCriterionExceptionAn exception that is thrown when the error criterion cannot be met.Classcom.numericalmethod.suanshu.analysis.differentialequationSuanShu
WaveEquation1DA one-dimensional wave equation is a hyperbolic PDE that takes the following form.Classcom.numericalmethod.suanshu.analysis.differentialequation.pde.finitedifference.hyperbolic.dim1SuanShu
WaveEquation2DA two-dimensional wave equation is a hyperbolic PDE that takes the following form.Classcom.numericalmethod.suanshu.analysis.differentialequation.pde.finitedifference.hyperbolic.dim2SuanShu