Search Java Classes and Packages

Search Java Frameworks and Libraries

255581 classes and counting ...
Search Tips Index Status



#Com.numericalmethod.suanshu.analysis.function.special Classes and Interfaces - 28 results found.
NameDescriptionTypePackageFramework
BetaThe beta function defined as: B(x,y) = frac{Gamma(x)Gamma(y)}{Gamma(x+y)}= int_0^1t^{x-1}(1-t)^{y-1},dt, x > 0, y > 0Classcom.numericalmethod.suanshu.analysis.function.special.betaSuanShu
BetaRegularizedThe Regularized Incomplete Beta function is defined as: I_x(p,q) = frac{B(x;,p,q)}{B(p,q)} = frac{1}{B(p,q)} int_0^x t^{p-1},(1-t)^{q-1},dt, p > 0, q > 0Classcom.numericalmethod.suanshu.analysis.function.special.betaSuanShu
BetaRegularizedInverseThe inverse of the Regularized Incomplete Beta function is defined at: x = I^{-1}_{(p,q)}(u), 0 le u le 1Classcom.numericalmethod.suanshu.analysis.function.special.betaSuanShu
CumulativeNormalHastingsHastings algorithm is faster but less accurate way to compute the cumulative standard Normal.Classcom.numericalmethod.suanshu.analysis.function.special.gaussianSuanShu
CumulativeNormalInverseThe inverse of the cumulative standard Normal distribution function is defined as: This implementation uses the Beasley-Springer-Moro algorithm.Classcom.numericalmethod.suanshu.analysis.function.special.gaussianSuanShu
CumulativeNormalMarsagliaMarsaglia is about 3 times slower but is more accurate to compute the cumulative standard Normal.Classcom.numericalmethod.suanshu.analysis.function.special.gaussianSuanShu
DigammaThe digamma function is defined as the logarithmic derivative of the gamma function.Classcom.numericalmethod.suanshu.analysis.function.special.gammaSuanShu
ErfThe Error function is defined as: operatorname{erf}(x) = frac{2}{sqrt{pi}}int_{0}^x e^{-t^2} dtClasscom.numericalmethod.suanshu.analysis.function.special.gaussianSuanShu
ErfcThis complementary Error function is defined as: operatorname{erfc}(x)Classcom.numericalmethod.suanshu.analysis.function.special.gaussianSuanShu
ErfInverseThe inverse of the Error function is defined as: operatorname{erf}^{-1}(x)Classcom.numericalmethod.suanshu.analysis.function.special.gaussianSuanShu
GammaThe Gamma function is an extension of the factorial function to real and complex numbers, with its argument shifted down by 1.Interfacecom.numericalmethod.suanshu.analysis.function.special.gammaSuanShu
GammaGergoNemesThe Gergo Nemes' algorithm is very simple and quick to compute the Gamma function, if accuracy is not critical.Classcom.numericalmethod.suanshu.analysis.function.special.gammaSuanShu
GammaLanczosLanczos approximation provides a way to compute the Gamma function such that the accuracy can be made arbitrarily precise.Classcom.numericalmethod.suanshu.analysis.function.special.gammaSuanShu
GammaLanczosQuickLanczos approximation, computations are done in double.Classcom.numericalmethod.suanshu.analysis.function.special.gammaSuanShu
GammaLowerIncompleteThe Lower Incomplete Gamma function is defined as: gamma(s,x) = int_0^x t^{s-1},e^{-t},{ m d}t = P(s,x)Gamma(s)Classcom.numericalmethod.suanshu.analysis.function.special.gammaSuanShu
GammaRegularizedPThe Regularized Incomplete Gamma P function is defined as: P(s,x) = frac{gamma(s,x)}{Gamma(s)} = 1 - Q(s,x), s geq 0, x geq 0Classcom.numericalmethod.suanshu.analysis.function.special.gammaSuanShu
GammaRegularizedPInverseThe inverse of the Regularized Incomplete Gamma P function is defined as: x = P^{-1}(s,u), 0 geq u geq 1Classcom.numericalmethod.suanshu.analysis.function.special.gammaSuanShu
GammaRegularizedQThe Regularized Incomplete Gamma Q function is defined as: Q(s,x)=frac{Gamma(s,x)}{Gamma(s)}=1-P(s,x), s geq 0, x geq 0Classcom.numericalmethod.suanshu.analysis.function.special.gammaSuanShu
GammaUpperIncompleteThe Upper Incomplete Gamma function is defined as: Gamma(s,x) = int_x^{infty} t^{s-1},e^{-t},{ m d}t = Q(s,x) imes Gamma(s)Classcom.numericalmethod.suanshu.analysis.function.special.gammaSuanShu
GaussianThe Gaussian function is defined as: f(x) = a e^{- { frac{(x-b)^2 }{ 2 c^2} } }Classcom.numericalmethod.suanshu.analysis.function.special.gaussianSuanShu
LanczosThe Lanczos approximation is a method for computing the Gamma function numerically, published by Cornelius Lanczos in 1964.Classcom.numericalmethod.suanshu.analysis.function.special.gammaSuanShu
LogBetaThis class represents the log of Beta function log(B(x, y)).Classcom.numericalmethod.suanshu.analysis.function.special.betaSuanShu
LogGammaThe log-Gamma function, (log (Gamma(z))), for positive real numbers, is the log of the Gamma function.Classcom.numericalmethod.suanshu.analysis.function.special.gammaSuanShu
LogGamma .Methodthe available methods to compute (log (Gamma(z)))Lanczos approximation.Classcom.numericalmethod.suanshu.analysis.function.special.gammaSuanShu
MultinomialBetaFunctionA multinomial Beta function is defined as: frac{prod_{i=1}^K Gamma(alpha_i)}{Gammaleft(sum_{i=1}^KClasscom.numericalmethod.suanshu.analysis.function.special.betaSuanShu
RastriginThe Rastrigin function is a non-convex function used as a performance test problem for optimization algorithms.Classcom.numericalmethod.suanshu.analysis.function.specialSuanShu
StandardCumulativeNormalThe cumulative Normal distribution function describes the probability of a Normal random variable falling in the interval ((-infty, x]).Interfacecom.numericalmethod.suanshu.analysis.function.special.gaussianSuanShu
TrigammaThe trigamma function is defined as the logarithmic derivative of the digamma function.Classcom.numericalmethod.suanshu.analysis.function.special.gammaSuanShu