| Name | Description | Type | Package | Framework |
| BiconjugateGradientSolver | The Biconjugate Gradient method (BiCG) is useful for solving non-symmetric n-by-n linear systems. | Class | com.numericalmethod.suanshu.algebra.linear.matrix.doubles.matrixtype.sparse.solver.iterative.nonstationary | SuanShu |
|
| BiconjugateGradientStabilizedSolver | The Biconjugate Gradient Stabilized (BiCGSTAB) method is useful for solving non-symmetric n-by-n linear systems. | Class | com.numericalmethod.suanshu.algebra.linear.matrix.doubles.matrixtype.sparse.solver.iterative.nonstationary | SuanShu |
|
| ConjugateGradientNormalErrorSolver | For an under-determined system of linear equations, Ax = b, or when the coefficient matrix A is non-symmetric and nonsingular, | Class | com.numericalmethod.suanshu.algebra.linear.matrix.doubles.matrixtype.sparse.solver.iterative.nonstationary | SuanShu |
|
| ConjugateGradientNormalResidualSolver | For an under-determined system of linear equations, Ax = b, or when the coefficient matrix A is non-symmetric and nonsingular, | Class | com.numericalmethod.suanshu.algebra.linear.matrix.doubles.matrixtype.sparse.solver.iterative.nonstationary | SuanShu |
|
| ConjugateGradientSolver | The Conjugate Gradient method (CG) is useful for solving a symmetric n-by-n linear system. | Class | com.numericalmethod.suanshu.algebra.linear.matrix.doubles.matrixtype.sparse.solver.iterative.nonstationary | SuanShu |
|
| ConjugateGradientSquaredSolver | The Conjugate Gradient Squared method (CGS) is useful for solving a non-symmetric n-by-n linear system. | Class | com.numericalmethod.suanshu.algebra.linear.matrix.doubles.matrixtype.sparse.solver.iterative.nonstationary | SuanShu |
|
| ConvergenceFailure | This exception is thrown by IterativeLinearSystemSolver. | Class | com.numericalmethod.suanshu.algebra.linear.matrix.doubles.matrixtype.sparse.solver.iterative | SuanShu |
|
| ConvergenceFailure .Reason | the reasons for the convergence failureThrown when the iterative algorithm fails to proceed during its | Class | com.numericalmethod.suanshu.algebra.linear.matrix.doubles.matrixtype.sparse.solver.iterative | SuanShu |
|
| GaussSeidelSolver | Similar to the Jacobi method, the Gauss-Seidel method (GS) solves each equation in sequential order. | Class | com.numericalmethod.suanshu.algebra.linear.matrix.doubles.matrixtype.sparse.solver.iterative.stationary | SuanShu |
|
| GeneralizedConjugateResidualSolver | The Generalized Conjugate Residual method (GCR) is useful for solving a non-symmetric n-by-n linear system. | Class | com.numericalmethod.suanshu.algebra.linear.matrix.doubles.matrixtype.sparse.solver.iterative.nonstationary | SuanShu |
|
| GeneralizedMinimalResidualSolver | The Generalized Minimal Residual method (GMRES) is useful for solving a non-symmetric n-by-n linear system. | Class | com.numericalmethod.suanshu.algebra.linear.matrix.doubles.matrixtype.sparse.solver.iterative.nonstationary | SuanShu |
|
| IdentityPreconditioner | This identity preconditioner is used when no preconditioning is applied. | Class | com.numericalmethod.suanshu.algebra.linear.matrix.doubles.matrixtype.sparse.solver.iterative.preconditioner | SuanShu |
|
| IterativeLinearSystemSolver | An iterative method for solving an N-by-N (or non-square) linear system Ax = b involves a sequence of matrix-vector multiplications. | Interface | com.numericalmethod.suanshu.algebra.linear.matrix.doubles.matrixtype.sparse.solver.iterative | SuanShu |
|
| IterativeLinearSystemSolver .Solution | This is the solution to a system of linear equations using an iterativeSearch for a solution that optimizes the objective function from the | Interface | com.numericalmethod.suanshu.algebra.linear.matrix.doubles.matrixtype.sparse.solver.iterative | SuanShu |
|
| JacobiPreconditioner | The Jacobi (or diagonal) preconditioner is one of the simplest forms of preconditioning, such that the preconditioner is the diagonal of | Class | com.numericalmethod.suanshu.algebra.linear.matrix.doubles.matrixtype.sparse.solver.iterative.preconditioner | SuanShu |
|
| JacobiSolver | The Jacobi method solves sequentially n equations in a linear system Ax = b in isolation in each iteration. | Class | com.numericalmethod.suanshu.algebra.linear.matrix.doubles.matrixtype.sparse.solver.iterative.stationary | SuanShu |
|
| MinimalResidualSolver | The Minimal Residual method (MINRES) is useful for solving a symmetric n-by-n linear system (possibly indefinite or singular). | Class | com.numericalmethod.suanshu.algebra.linear.matrix.doubles.matrixtype.sparse.solver.iterative.nonstationary | SuanShu |
|
| Preconditioner | Preconditioning reduces the condition number of the coefficient matrix of a linear system to accelerate the convergence | Interface | com.numericalmethod.suanshu.algebra.linear.matrix.doubles.matrixtype.sparse.solver.iterative.preconditioner | SuanShu |
|
| PreconditionerFactory | This constructs a new instance of Preconditioner for a coefficient matrix. | Interface | com.numericalmethod.suanshu.algebra.linear.matrix.doubles.matrixtype.sparse.solver.iterative.preconditioner | SuanShu |
|
| QuasiMinimalResidualSolver | The Quasi-Minimal Residual method (QMR) is useful for solving a non-symmetric n-by-n linear system. | Class | com.numericalmethod.suanshu.algebra.linear.matrix.doubles.matrixtype.sparse.solver.iterative.nonstationary | SuanShu |
|
| SORSweep | This is a building block for to perform the forward or backward sweep. | Class | com.numericalmethod.suanshu.algebra.linear.matrix.doubles.matrixtype.sparse.solver.iterative.stationary | SuanShu |
|
| SSORPreconditioner | SSOR preconditioner is derived from a symmetric coefficient matrix A which is decomposed as | Class | com.numericalmethod.suanshu.algebra.linear.matrix.doubles.matrixtype.sparse.solver.iterative.preconditioner | SuanShu |
|
| SteepestDescentSolver | The Steepest Descent method (SDM) solves a symmetric n-by-n linear system. | Class | com.numericalmethod.suanshu.algebra.linear.matrix.doubles.matrixtype.sparse.solver.iterative.nonstationary | SuanShu |
|
| SuccessiveOverrelaxationSolver | The Successive Overrelaxation method (SOR), is devised by applying extrapolation to the Gauss-Seidel method. | Class | com.numericalmethod.suanshu.algebra.linear.matrix.doubles.matrixtype.sparse.solver.iterative.stationary | SuanShu |
|
| SymmetricSuccessiveOverrelaxationSolver | The Symmetric Successive Overrelaxation method (SSOR) is like SOR, but it performs in each | Class | com.numericalmethod.suanshu.algebra.linear.matrix.doubles.matrixtype.sparse.solver.iterative.stationary | SuanShu |