| Name | Description | Type | Package | Framework |
| CubicRoot | This is a cubic equation solver. | Class | com.numericalmethod.suanshu.analysis.function.polynomial.root | SuanShu |
| JenkinsTraubReal | The Jenkins-Traub algorithm is a fast globally convergent iterative method for solving for polynomial roots. | Class | com.numericalmethod.suanshu.analysis.function.polynomial.root.jenkinstraub | SuanShu |
| LinearRoot | This is a solver for finding the roots of a linear equation. | Class | com.numericalmethod.suanshu.analysis.function.polynomial.root | SuanShu |
| PolyRoot | This is a solver for finding the roots of a polynomial equation. | Class | com.numericalmethod.suanshu.analysis.function.polynomial.root | SuanShu |
| PolyRootSolver | A root (or a zero) of a polynomial p is a member x in the domain of p such that p(x) vanishes. | Interface | com.numericalmethod.suanshu.analysis.function.polynomial.root | SuanShu |
| QuadraticRoot | This is a solver for finding the roots of a quadratic equation, (ax^2 + bx + c = 0). | Class | com.numericalmethod.suanshu.analysis.function.polynomial.root | SuanShu |
| QuarticRoot | This is a quartic equation solver that solves (ax^4 + bx^3 + cx^2 + dx + e = 0). | Class | com.numericalmethod.suanshu.analysis.function.polynomial.root | SuanShu |
| QuarticRoot .QuarticSolver | This defines a quartic equation solver. | Interface | com.numericalmethod.suanshu.analysis.function.polynomial.root | SuanShu |
| QuarticRootFerrari | This is a quartic equation solver that solves (ax^4 + bx^3 + cx^2 + dx + e = 0) using the Ferrari method. | Class | com.numericalmethod.suanshu.analysis.function.polynomial.root | SuanShu |
| QuarticRootFormula | This is a quartic equation solver that solves (ax^4 + bx^3 + cx^2 + dx + e = 0) using a root-finding formula. | Class | com.numericalmethod.suanshu.analysis.function.polynomial.root | SuanShu |